TinyGo Program Translation
Translate a Arduino C-Sketch (MAX7219 Driver) into Golang with TinyGO
MAX7219 Driver in TinyGo
Wow, I wonder what prompted me to start blogging again…
Anyway I’ve had some free time on my hands, and I’ve been learning Go for work. After a coworker mentioned TinyGo, I figured I’d take a look at the microcontroller support library and translate one of my old Arduino projects into Go for fun. Since I’ve written, and rewritten a driver for the MAX7219 display driver chip, I figured I’d port it to TinyGo for their drivers repository.
Again, here is the sketch in C:
int dataIn = 2;
int load = 3;
int clock = 4;
int maxInUse = 4; //change this variable to set how many MAX7219's you'll use
int e = 0; // just a variable
// define max7219 registers
byte max7219_reg_noop = 0x00;
byte max7219_reg_digit0 = 0x01;
byte max7219_reg_digit1 = 0x02;
byte max7219_reg_digit2 = 0x03;
byte max7219_reg_digit3 = 0x04;
byte max7219_reg_digit4 = 0x05;
byte max7219_reg_digit5 = 0x06;
byte max7219_reg_digit6 = 0x07;
byte max7219_reg_digit7 = 0x08;
byte max7219_reg_decodeMode = 0x09;
byte max7219_reg_intensity = 0x0a;
byte max7219_reg_scanLimit = 0x0b;
byte max7219_reg_shutdown = 0x0c;
byte max7219_reg_displayTest = 0x0f;
void putByte(byte data) {
byte i = 8;
byte mask;
while(i > 0) {
mask = 0x01 << (i - 1); // get bitmask
digitalWrite( clock, LOW); // tick
if (data & mask){ // choose bit
digitalWrite(dataIn, HIGH);// send 1
}else{
digitalWrite(dataIn, LOW); // send 0
}
digitalWrite(clock, HIGH); // tock
--i; // move to lesser bit
}
}
void maxSingle( byte reg, byte col) {
//maxSingle is the "easy" function to use for a single max7219
digitalWrite(load, LOW); // begin
putByte(reg); // specify register
putByte(col);//((data & 0x01) * 256) + data >> 1); // put data
digitalWrite(load, LOW); // and load da stuff
digitalWrite(load,HIGH);
}
void maxAll (byte reg, byte col) { // initialize all MAX7219's in the system
int c = 0;
digitalWrite(load, LOW); // begin
for ( c =1; c<= maxInUse; c++) {
putByte(reg); // specify register
putByte(col);//((data & 0x01) * 256) + data >> 1); // put data
}
digitalWrite(load, LOW);
digitalWrite(load,HIGH);
}
void maxOne(byte maxNr, byte reg, byte col) {
//maxOne is for addressing different MAX7219's,
//while having a couple of them cascaded
int c = 0;
digitalWrite(load, LOW); // begin
for ( c = maxInUse; c > maxNr; c--) {
putByte(0); // means no operation
putByte(0); // means no operation
}
putByte(reg); // specify register
putByte(col);//((data & 0x01) * 256) + data >> 1); // put data
for ( c =maxNr-1; c >= 1; c--) {
putByte(0); // means no operation
putByte(0); // means no operation
}
digitalWrite(load, LOW); // and load da stuff
digitalWrite(load,HIGH);
}
void setup () {
pinMode(dataIn, OUTPUT);
pinMode(clock, OUTPUT);
pinMode(load, OUTPUT);
digitalWrite(13, HIGH);
//initiation of the max 7219
maxAll(max7219_reg_scanLimit, 0x07);
maxAll(max7219_reg_decodeMode, 0x00); // using an led matrix (not digits)
maxAll(max7219_reg_shutdown, 0x01); // not in shutdown mode
maxAll(max7219_reg_displayTest, 0x00); // no display test
for (e=1; e<=8; e++) { // empty registers, turn all LEDs off
maxAll(e,0);
}
maxAll(max7219_reg_intensity, 0x0f & 0x0f); // the first 0x0f is the value you can set
// range: 0x00 to 0x0f
}
Go’s interface pattern will allow us to make this a lot more succinct, and allow us to better encapsulate the function of the MAX, henceforth called Device
to follow tinygo/driver
’s nameing convention.
We start by declaring our package name, and a basic definition of a MAX7219 Struct
:
package max7219
import (
"github.com/tinygo-org/tinygo/src/machine"
)
// Uses a 3-wire serial interface
type Device struct {
Data machine.Pin // DIN
Load machine.Pin // Can also be labeled CS
Clock machine.Pin // CLK
MaxInUse int // Number of daisy chained MAX units
}
We require use of the TinyGo machine
library to interface with Arduino’s pins. Machine is a hardware-abstraction layer, similar to the Arduino library in the Arduino IDE. It will allow us to run this code on a variety of hardware, provided the pins to the MAX7219 configured similarly in the code.
The Factory Method pattern is very popular in Go, and taught as idiomatic. Also, the drivers
library seems to use that pattern, so we’ll follow suit.
// Initialize the pins for a MAX7219 device as output pins
func New(pd machine.Pin, pl machine.Pin, pc machine.Pin, n ...int) *Device {
pl.Configure(machine.PinConfig{Mode: machine.PinOutput})
pd.Configure(machine.PinConfig{Mode: machine.PinOutput})
pc.Configure(machine.PinConfig{Mode: machine.PinOutput})
inUse := 1
if len(n) > 0 {
inUse = n[0]
}
dev := Device{Data: pd, Load: pl, Clock: pc, MaxInUse: inUse}
return &dev
}
// Initialize the matrix for input
func (d Device) Configure() {
d.MaxSingle(REG_SCANLIMIT, 0x07)
d.MaxSingle(REG_DECODE_MODE, 0x00)
d.MaxSingle(REG_SHUTDOWN, 0x01)
d.MaxSingle(REG_DISPLAY_TEST, 0x00)
// Wipe all rows of the matrix
for r := 0; r <= 8; r++ {
d.MaxSingle(byte(r), 0)
}
d.MaxSingle(REG_INTENSITY, 0x0F&0x0F)
}
Notice we split our function into two parts, removing the implementation details from the “constructor” method New()
and into the Configure()
method. This allows us to instantiate a Device
before connecting to hardware, which is useful for testing.
NOTE: If you’re wondering where the registeres REG_*
are coming from, they’re in a separate file in the same directory called registers.go
package max7219
const (
REG_NOOP = 0x00
REG_DIGIT0 = 0x01
REG_DIGIT1 = 0x02
REG_DIGIT2 = 0x03
REG_DIGIT3 = 0x04
REG_DIGIT4 = 0x05
REG_DIGIT5 = 0x06
REG_DIGIT6 = 0x07
REG_DIGIT7 = 0x08
REG_DECODE_MODE = 0x09
REG_INTENSITY = 0x0A
REG_SCANLIMIT = 0x0B
REG_SHUTDOWN = 0x0C
REG_DISPLAY_TEST = 0x0F
)
This saves space in the main file, and makes the hardware more configurable.
We then almost copy the code from main.c
verbatim, only changing some formatting where Go differs from C:
// Helper function to send a single byte to the matrix
func (d Device) putByte(data byte) {
for i := 0x08; i > 0; i-- {
mask := byte(0x01 << (i - 1))
d.Clock.Low() // tick
if (data & mask) > 0 {
d.Data.High()
} else {
d.Data.Low()
}
d.Clock.High() // tock
}
}
// Write the bitstring `col` to `row`
// Note: Row is indexed at 1
func (d Device) MaxSingle(row byte, col byte) {
d.Load.Low()
d.putByte(row)
d.putByte(col)
d.Load.Low()
d.Load.High()
}
func (d Device) MaxAll(row byte, col byte) {
d.Load.Low() // begin
for c := 1; c <= d.MaxInUse; c++ {
d.putByte(row)
d.putByte(col)
}
d.Load.Low()
d.Load.High()
}
// Address different MAX chips while having a couple cascaded
func (d Device) MaxOne(index int, row byte, col byte) {
d.Load.Low()
for c := d.MaxInUse; c > index; c-- {
d.putByte(0) // NOP
d.putByte(0) // NOP
}
d.putByte(row)
d.putByte(col)
for c := index - 1; c >= 1; c-- {
d.putByte(0) // NOP
d.putByte(0) // NOP
}
}
A note of caution: you cannot currently pass pointers through function parameters in TinyGo. The compiler will throw very cryptic errors and dump a stacktrace to the console if you try and feed it a file where this occurs. This is why I had to scrap a WriteMatrix(mat [8]byte)
, as it passes a pointer to the byte array mat
. Otherwise, this could be even more useful. However, it’s much shorter and more readable to use a Device
struct for a matrix, then having to iterate over a byte array every time you want to write to the entire matrix. However, it’s a small price to pay for Go’s interface-driven function signatures, which are very handy and make the code much more reasonable, without all the cruft of a fully OOP language. It’s much more fun to write for microcontrollers than, say, a heftier language like C++. Still, the TinyGo library has a little ways to go before it’s ready for use in any serious application. But when it is, it will surely take a large portion of C developers with it.